

## ACTIVE AgriScience

ACTIVEAGRISCIENCE.COM

# \* \*\*\*

TECHNOLOGY BEYOND the POINT of NUTRITION™

## PRODUCT GUIDE NITROGEN STABILISERS

## ECONOMICAL

## **FLEXIBLE**

SUSTAINABLE



## TABLE OF CONTENTS

| ABOUT US                              |
|---------------------------------------|
| INTRODUCTION                          |
| BENEFITS OF ACTIVE STABILIZER™ PLUS 5 |
| BENEFITS OF ARM U™ 28% NBPT 6         |
| BENEFITS OF ARM U™ 16% DMPP           |
| PRODUCT COMPARISON                    |
| APPLICATION RATES                     |
| 2021 GREENHOUSE TRIALS 10             |
| 2021 FIELD TRIALS 11                  |
| N STABILISERS REDUCE GLOBAL WARMING   |
| 2023 NITROUS OXIDE EMISSIONS TRIALS   |

## **ABOUT US**



AgriScience

activeagriscience.com

#### TECHNOLOGY BEYOND THE POINT OF NUTRITION™

Active AgriScience Inc. supports the farming community by providing innovative, effective and economical products. A leader in plant nutrient and bioactive compound research and technology, Active AgriScience uses rigorous scientific methods to develop full cycle fertiliser and nitrogen management solutions to help enhance crop potential while being mindful of environmental impacts.

#### INTRODUCTION

Nitrogen is essential for plant life and growth and is therefore a component of many fertilisers. Nitrogen loss is a challenge facing every grower when applying Urea or UAN in the spring or fall, regardless of the application method.

The risk of this nitrogen loss varies with:

- the type of nitrogen
- soil type
- temperature
- management practices

Without any protective coating up to 50% of soil-applied nitrogen is unavailable to the plant. Nitrogen can be converted quickly into ammonia gas through the process of ammonia volatilization and then released into the atmosphere. Nitrogen can also be lost in the soil through nitrification, the process of converting ammonium ions to less stable nitrate ions. Both of these mechanisms play a substantial role in the loss of valuable nitrogen.

Understanding the nitrogen cycle and the factors that can result in nitrogen loss are crucial to finding the right solution to this problem



## INTRODUCTION

Volatilization and nitrification are two processes that are responsible for nitrogen loss.







## BENEFITS of ARM U<sup>™</sup> 28% NBPT



## BENEFITS of ARM U<sup>™</sup> 16% DMPP



## **PRODUCT COMPARISON**

| A C T I V E<br>AgriScience | active O<br>STABILIZER<br>PLUS                                                          | 28% NBPT                                                                                                                                             | ARM U <sup>M</sup><br>16% DMPP                                                                                                                       |
|----------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| N STABILISERS              | Active STABILIZER<br>PLUS                                                               | ARM U 28% NBPT                                                                                                                                       | ARM U 16% DMPP                                                                                                                                       |
| ROLE OF THE<br>PRODUCT     | Reduces ammonia<br>volatilisation, nitrate<br>leaching, and nitrous<br>oxide emissions. | Reduces ammonia<br>volatilisation.                                                                                                                   | Reduces nitrate<br>leaching and nitrous<br>oxide emissions.                                                                                          |
| PATENTED                   | Yes                                                                                     | Yes                                                                                                                                                  | Yes                                                                                                                                                  |
| ANALYSIS                   | 13% NBPT + 2.2%<br>DMPP                                                                 | 28.6% NBPT                                                                                                                                           | 16.1% DMPP                                                                                                                                           |
| APPLICATION RATE<br>(UREA) | 2 L/MT                                                                                  | 2 L/MT                                                                                                                                               | 0.6 L/MT                                                                                                                                             |
| APPLICATION RATE<br>(UAN)  | 1.5 L/MT                                                                                | 1.5 L/MT                                                                                                                                             | 0.35 L/MT                                                                                                                                            |
| COMPATIBILITY              | Can be mixed with<br>other Active<br>AgriScience stabilisers                            | Designed to allow<br>ARM U NBPT and<br>DMPP products to be<br>easily mixed together<br>as required for<br>maximum flexibility to<br>suit your needs. | Designed to allow<br>ARM U NBPT and<br>DMPP products to be<br>easily mixed together<br>as required for<br>maximum flexibility to<br>suit your needs. |

READ THE ENTIRE LABEL BEFORE USING THESE PRODUCTS.



## ACTIVE STABILIZER<sup>™</sup> PLUS BLENDING INSTRUCTIONS

**Blending into UREA:** Use 2 L Active STABILIZER<sup>™</sup> PLUS / 1000 kg Urea. For uniform blending, use a blender with impregnation equipment. Weigh the urea and transfer to blender. Add the required amount of Active STABILIZER<sup>™</sup> PLUS to the urea in the blender. Blend until the Active STABILIZER<sup>™</sup> PLUS is uniformly mixed into the urea. Do not add any other fertilizer materials until Active STABILIZER<sup>™</sup> PLUS is thoroughly distributed. If mixture appears wet or sticky, a drying agent may be added at this time. **Blending into UAN:** Use 1.5 L of Active STABILIZER<sup>™</sup> PLUS / 1000 kg UAN solution. Fill spray tank with half the desired amount of UAN, Measure the recommended quantity of Active STABILIZER<sup>™</sup> PLUS and add to the tank. Mix well. Add other products at this stage, if needed. Add the second half of the UAN solution. Continue mixing until well blended. Keep agitator running while mixing.



## ARM U<sup>™</sup> 28% NBPT BLENDING INSTRUCTIONS

**Blending into UREA:** Use 2 L ARM U<sup>™</sup> 28% NBPT/1000 kg Urea. For uniform blending, use a blender with impregnation equipment. Weigh the urea and transfer to blender. Add the required amount of ARM U<sup>™</sup> 28% NBPT to the urea in the blender. Blend until the ARM U<sup>™</sup> 28% NBPT is uniformly mixed into the urea. Do not add any other fertiliser materials until ARM U<sup>™</sup> 28% NBPT is thoroughly distributed. If mixture appears wet or sticky, a drying agent may be added at this time. **Blending into UAN:** Use 1.2 L ARM U<sup>™</sup> 28% NBPT/ 1000 kg UAN solution. Fill spray tank with half the desired amount of UAN, Measure the recommended quantity of ARM U<sup>™</sup> 28% NBPT and add to the tank. Mix well. Add other products at this stage, if needed. Add the second half of the UAN solution. Continue mixing until well blended. Keep agitator running while mixing.



## **ARM U<sup>™</sup> 16% DMPP BLENDING INSTRUCTIONS**

**Blending into UREA:** Use 0.6 L ARM U<sup>TM</sup> 16% DMPP/1000 kg Urea. For uniform blending, use a blender with impregnation equipment. Weigh the urea and transfer to blender. Add the required amount of ARM U<sup>TM</sup> 16% DMPP to the urea in the blender. Blend until the ARM U<sup>TM</sup> 16% DMPP is uniformly mixed into the urea. Do not add any other fertiliser materials until ARM U<sup>TM</sup> 16% DMPP is thoroughly distributed. If mixture appears wet or sticky, a drying agent may be added at this time. **Blending into UAN:** Use 0.35 L ARM U<sup>TM</sup> 16% DMPP/ 1000 kg UAN solution. Fill spray tank with half the desired amount of UAN, Measure the recommended quantity of ARM U<sup>TM</sup> 16% DMPP and add to the tank. Mix well. Add other products at this stage, if needed. Add the second half of the UAN solution. Continue mixing until well blended. Keep agitator running while mixing.

## **GREENHOUSE TRIALS • 2021 • CANADA**



#### BANDED UREA • 3rd Party Research by the University of Manitoba

| 7                        | 90                                                    |                                                       | BANDED              |                 |  |
|--------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|-----------------|--|
| EH3                      | 85                                                    | TREATMENTS                                            | NH3 loss<br>(kg∕ha) | % NH3 reduction |  |
| % N<br>REDUC             | 75t. t. t. t.<br>70                                   | Untreated Urea                                        | 16.6                | 0.0             |  |
| t <sub>65</sub> , t ⊂ αi | 1.2L/mt Active STABILIZER PLUS<br>(12% NBPT, 2% DMPP) | 4.6                                                   | 72.5                |                 |  |
| 3 LOSS<br>g∕ha)          | 15<br>12<br>9                                         | 1.8L/mt Active STABILIZER PLUS<br>(12% NBPT, 2% DMPP) | 3.4                 | 79.4            |  |
|                          |                                                       | 2.4L/mt Active STABILIZER PLUS<br>(12% NBPT, 2% DMPP) | 2.7                 | 83.8            |  |
| <b>HN</b>                | 2.4L/1<br>2.4L/1<br>2.4L/1                            |                                                       |                     |                 |  |

#### BROADCASTED UREA • 3rd Party Research by the University of Manitoba

| 7                                             | 85<br>80                                                                    |                                                       | BROADCAST           |                    |  |
|-----------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|---------------------|--------------------|--|
| % NH3   REDUCTIOI   1.2L/mt ASP   2.4L/mt ASP |                                                                             | TREATMENTS                                            | NH3 loss<br>(kg∕ha) | % NH3<br>reduction |  |
|                                               | Untreated Urea                                                              | 19.2                                                  | 0.0                 |                    |  |
|                                               | 60 C Q                                                                      | 1.2L/mt Active STABILIZER PLUS<br>(12% NBPT, 2% DMPP) | 7.4                 | 61.5               |  |
| NH3 LOSS<br>(kg/ha)                           | 12<br>Untreated<br>1.2L/mt ASP<br>2.4L/mt ASP<br>2.4L/mt ASP<br>2.4L/mt ASP | 1.8L/mt Active STABILIZER PLUS<br>(12% NBPT, 2% DMPP) | 4.8                 | 75.2               |  |
|                                               |                                                                             | 2.4L/mt Active STABILIZER PLUS<br>(12% NBPT, 2% DMPP) | 5.7                 | 70.3               |  |
|                                               |                                                                             |                                                       |                     |                    |  |

## FIELD TRIALS • 2021 • AUSTRALIA



#### PASTURE YIELD WITH UREA APPLIED AT 400 kg/ha

| g/ha)     | 3000<br>2750<br>2500                 |           | TREATMENTS                          | 1st CUT<br>[kg∕ha] | 2 <sub>ND</sub> CUT<br>(kg∕ha) | 3RD CUT<br>(kg∕ha) | TOTAL | %<br>CHANGE |
|-----------|--------------------------------------|-----------|-------------------------------------|--------------------|--------------------------------|--------------------|-------|-------------|
| ald (k    | 2250                                 |           | Untreated urea - 400 kg/ha          | 250                | 750                            | 300                | 1300  |             |
| sture Yie | 1500 III III III III III III III III |           | DMPP urea - 400 kg/ha (2)           | 400                | 1000                           | 350                | 1750  | 34.62       |
|           | 1000 од 2000 900 г.<br>750 93 УСС 97 | 't Active | NBPT urea - 400 kg/ha (2.6)         | 500                | 1500                           | 500                | 2500  | 92.31       |
| Ð         | 22.6L/<br>2.9L/<br>2.9L/<br>2.9L/    |           | Active Stabilizer - 400 kg/ha (2.4) | 550                | 1800                           | 400                | 2750  | 111.5       |

#### PASTURE YIELD WITH UREA APPLIED AT 100 kg/ha

|         | 3000 |     |           |        |         |  |
|---------|------|-----|-----------|--------|---------|--|
| ອ       | 2750 |     |           |        |         |  |
| 4       | 2500 |     |           |        |         |  |
| kg      | 2250 |     |           |        |         |  |
|         | 2000 |     |           |        | <br>ц.  |  |
|         | 1750 |     |           |        |         |  |
| Ľ.      | 1500 |     |           |        | AB.     |  |
|         | 1250 |     |           |        | ъ<br>Н  |  |
| 2       | 1000 |     | <u>a.</u> | <br>РТ | <br>ive |  |
| E       | 750  | eq  | ЧÞ        | <br>NB | <br>Act |  |
| <u></u> | 500  | eat | D         | <br>t  | <br>t   |  |
| ň       | 250  | ntr | Ľ         | <br>GĽ | <br>.4L |  |
|         | 0    |     | വ         | വ      | വ       |  |

| TREATMENTS                          | 1s⊤CUT<br>[kg∕ha] | 2ND CUT<br>(kg∕ha) | 3RD CUT<br>(kg∕ha) | TOTAL | %<br>CHANGE |
|-------------------------------------|-------------------|--------------------|--------------------|-------|-------------|
| Untreated urea - 100 kg/ha          | 100               | 600                | 200                | 900   |             |
| DMPP urea - 100 kg/ha (2)           | 150               | 600                | 175                | 925   | 2.778       |
| NBPT urea - 100 kg/ha (2.6)         | 175               | 675                | 250                | 1100  | 22.22       |
| Active Stabilizer - 100 kg/ha (2.4) | 175               | 700                | 250                | 1100  | 22.22       |

## N STABILISERS REDUCE GLOBAL WARMING

In today's world, the pressing issue of global warming demands innovative solutions. Nitrogen fertilisers are vital for agricultural productivity, yet they inadvertently contribute to global warming by releasing nitrous oxide, a greenhouse gas nearly 300 times more potent than carbon dioxide (CO2) and with an atmospheric lifespan exceeding a century.

Active AgriScience nitrification inhibitors (Active STABILIZER PLUS, ARM U 16% DMPP) helps us combat global warming by reducing the amount of nitrous oxide nitrogen fertiliser releases into the atmosphere.

A 2023 nitrous oxide (N<sub>2</sub>O) emissions study by the University of Manitoba compared N<sub>2</sub>O emissions from urea treated with Active STABILIZER PLUS against untreated. The study showed N<sub>2</sub>O emissions were reduced by 23% over 14 days.



Global warming potential based on 100 year time horizon, Source: IPCC AR5

## NITROUS OXIDE EMISSIONS • 2023 • CANADA



 $N_2O$  EMISSIONS from BROADCASTED UREA • 3rd Party Research by the University of Manitoba



 $N_2O$  EMISSIONS from SHALLOW BANDED UREA • 3rd Party Research by the University of Manitoba



| TREATMENT                    | N2O FLUX<br>(g⁄ha) | DIFFERENCE<br>(g/ha) | %<br>REDUCTION |
|------------------------------|--------------------|----------------------|----------------|
| Untreated                    | 6301               |                      |                |
| Active STABILIZER<br>PLUS    | 5161               | 1141                 | 18.1           |
| 32% NBPT +<br>ARM U 16% DMPP | 4462               | 1839                 | 29.2           |

Active AgriScience Inc. DISCLAIMER: Presented data and product attributes will not guarantee the future efficacy and product attributes as these vary greatly related to weather conditions soil types and genetics of crops. It is understood and agreed that Active AgriScience Inc. ("Active") does not guarantee that that use of its Products will yield any specific result. Active's legal liability, and that of its employees or agents, arising from use of its products shall be limited to the cost paid for the product regardless of whether any loss arose from Actives own negligence, breach of contract, or any other cause. Under no circumstance shall Active be liable, beyond the cost paid for the product, for direct consequential, incidental, or special damages, including, but not limited to, damage or destruction of a crop, or contamination of any property.



## ACTIVE AgriScience

ACTIVEAGRISCIENCE.COM

CONTACT: Phil Nixon PO Box 573, Willetton, WA, 6955 +61 402 794 288 phil.nixon@activeagriscience.com

Greg Tapscott 0438.974.354 greg.tapscott@activeagriscience.com