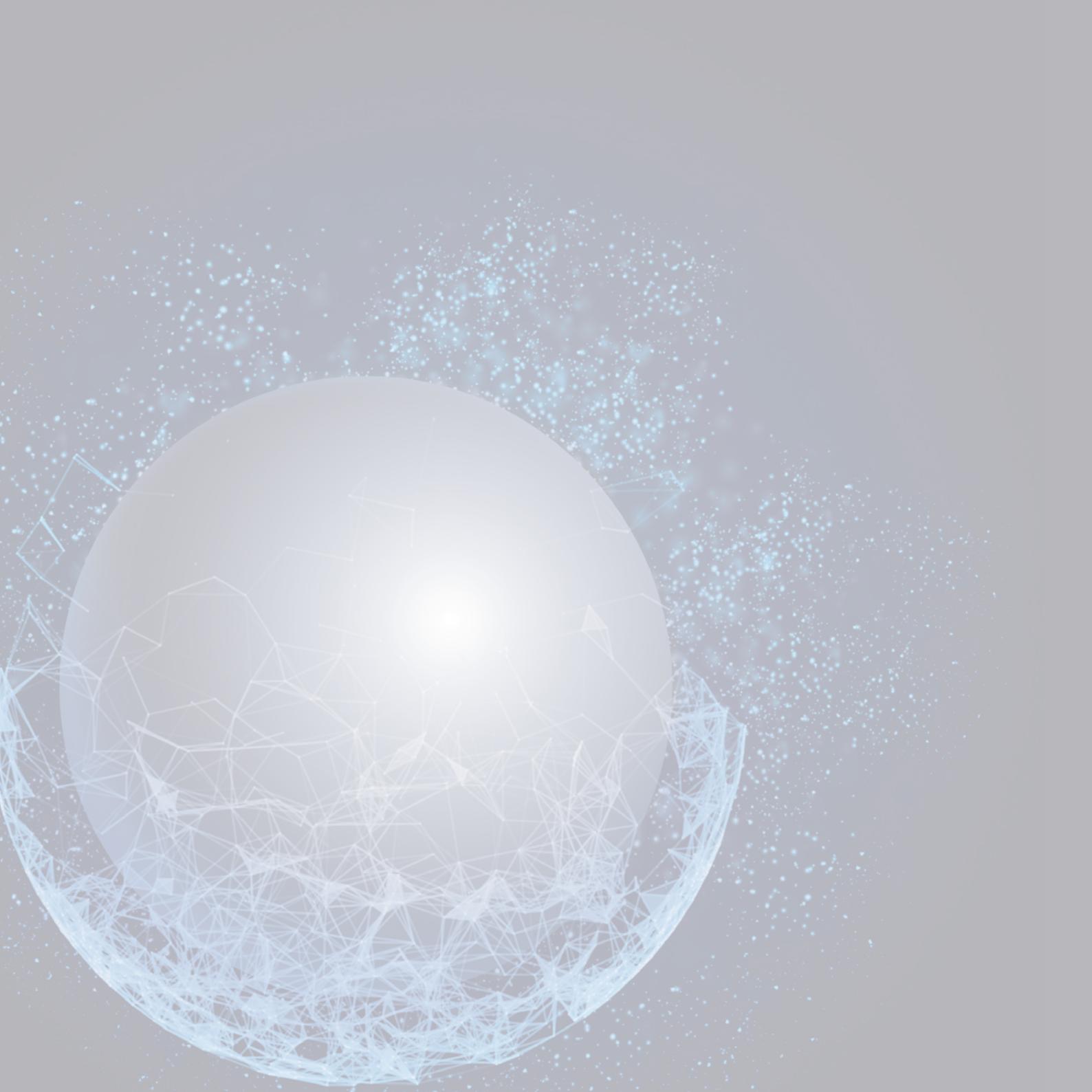


ACTIVETM
AgriScience

ACTIVEAGRISCIENCE.COM

TECHNOLOGY BEYOND the POINT of NUTRITION™

PRODUCT GUIDE


NITROGEN STABILISERS

ECONOMICAL

FLEXIBLE

SUSTAINABLE

Special thanks to our

RESEARCHERS

University of Manitoba

Dr. Francis Zvomuya

Dr. Theresa Adesanya

Dr. Wole Akinremi

Dr. Ahmed Lasisi

University of Winnipeg

Dr. Darshani Kumaragamage

● TABLE OF CONTENTS

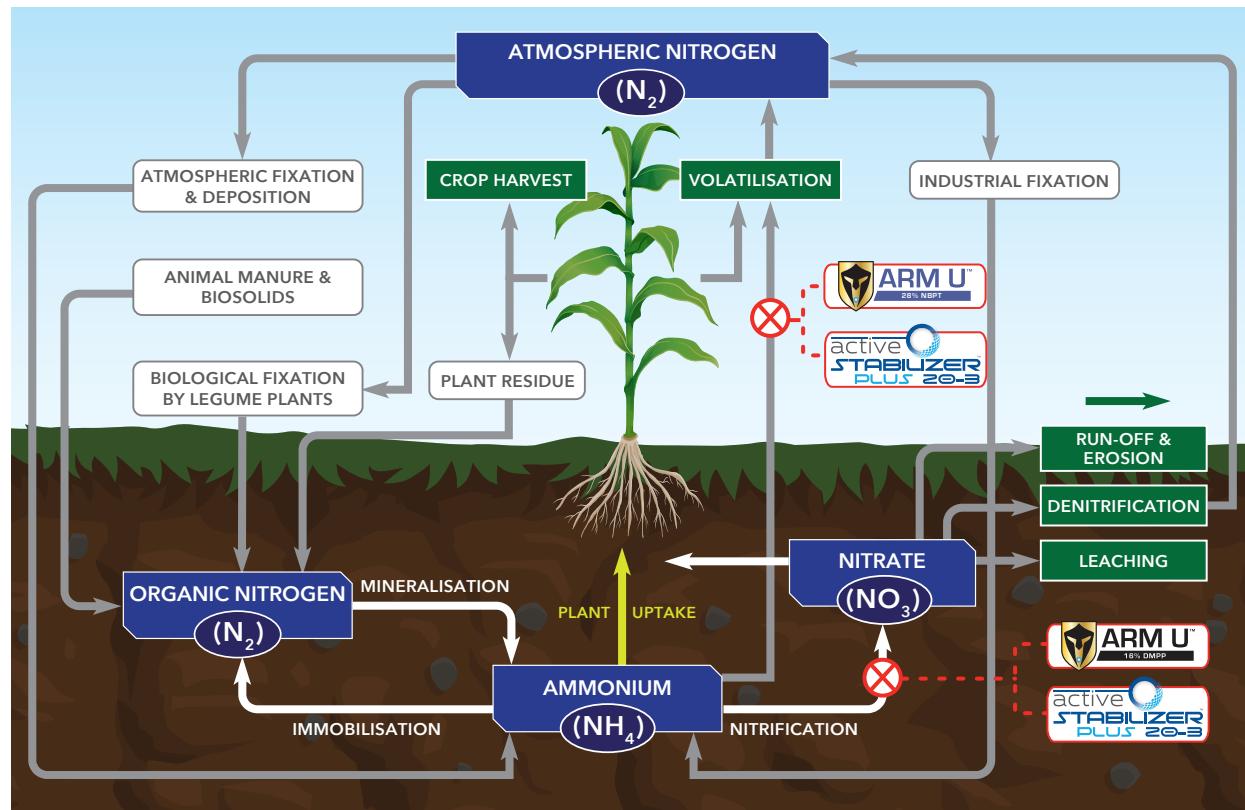
ABOUT US	1
INTRODUCTION	2
PRODUCT COMPARISON.....	7
BENEFITS OF ACTIVE STABILIZER™ PLUS 20-3.....	8
BENEFITS OF ARM U™ 28%NBPT	9
BENEFITS OF ARM U™ 16%DMPP	10
APPLICATION RATES	11
GREENHOUSE VOLATILISATION RESEARCH DATA.....	12
FIELD VOLATILISATION RESEARCH DATA.....	16
N2O EMISSIONS RESEARCH DATA	20
TREATED FERTILISER SHELF LIFE RESEARCH DATA	21
NITROGEN STABILISER SHELF LIFE RESEARCH DATA.....	22

• **ACTIVE**[™]
AgriScience
activeagriscience.com

TECHNOLOGY BEYOND THE POINT OF NUTRITION™

Active AgriScience Inc. supports the farming community by providing innovative, effective and economical products. A leader in plant nutrient and bioactive compound research and technology, Active AgriScience uses rigorous scientific methods to develop full cycle fertiliser and nitrogen management solutions to help enhance crop potential while being mindful of environmental impacts.

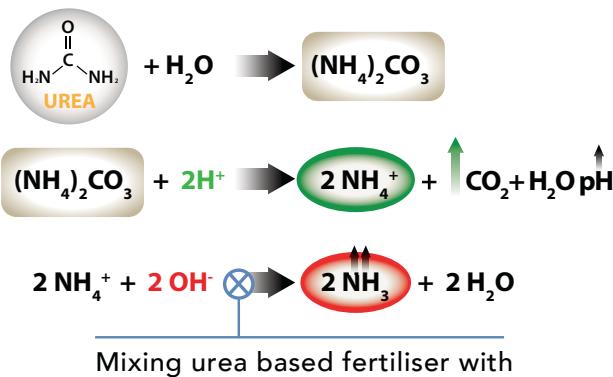
INTRODUCTION


Nitrogen is essential for plant life and growth and is therefore a component of many fertilisers. Nitrogen loss is a challenge facing every grower when applying Urea or UAN in the spring or autumn, regardless of the application method.

The risk of this nitrogen loss varies with:

- the type of nitrogen
- soil type
- temperature
- management practices

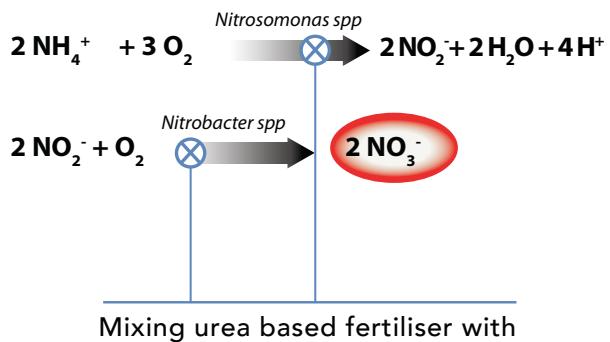
Without a protective coating, up to 50% of soil-applied nitrogen can be lost before the plant can use it.


Nitrogen can be converted quickly into ammonia gas through the process of ammonia volatilisation and then released into the atmosphere. Nitrogen can also be lost in the soil through nitrification, the process of converting ammonium ions to less stable nitrate ions. Both of these mechanisms play a substantial role in the loss of valuable nitrogen. Understanding the nitrogen cycle and the factors that can result in nitrogen loss are crucial to finding the right solution to this problem.

Volatilisation and **nitrification** are two processes that are responsible for nitrogen loss.

VOLATILISATION

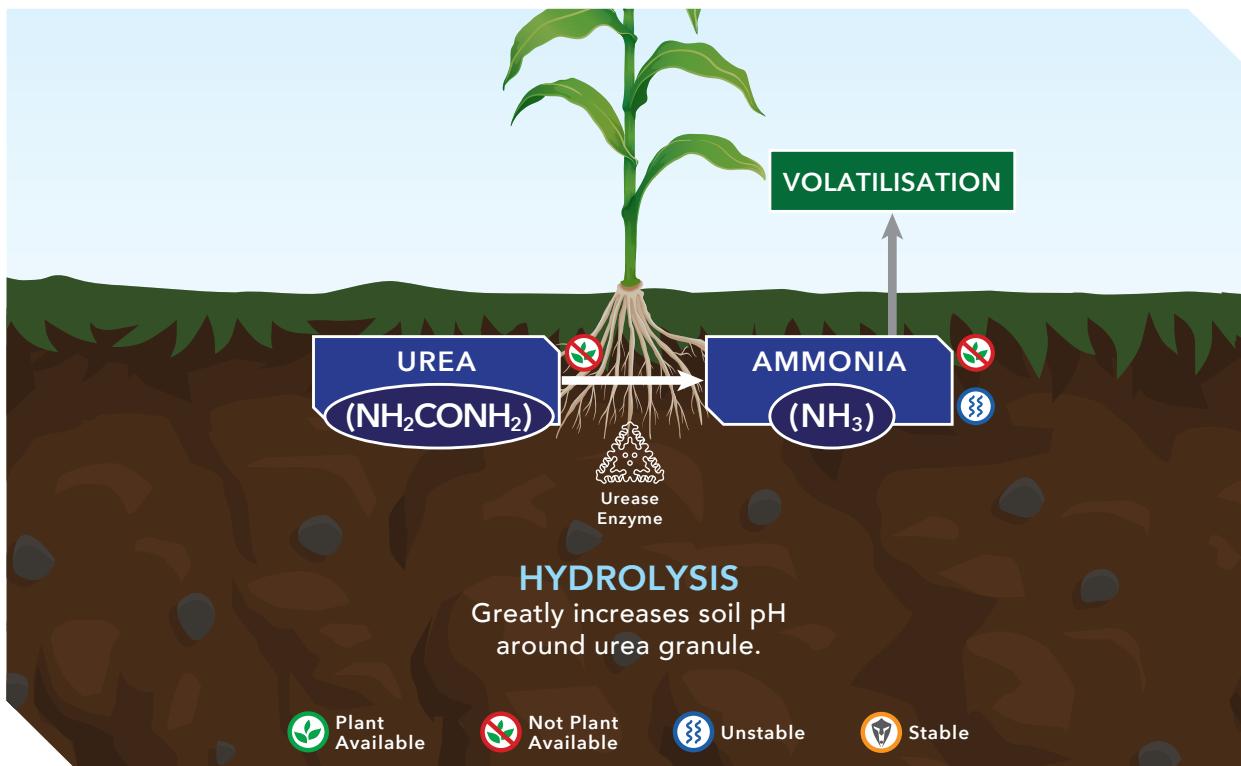
Ammonia volatilisation occurs during the hydrolysis of urea and is governed by the urease enzyme.


ARM U™ 28% NBPT
Active STABILIZER™ PLUS 20-3

reduces ammonia volatilisation
by inhibiting urease
enzyme activity.

NITRIFICATION

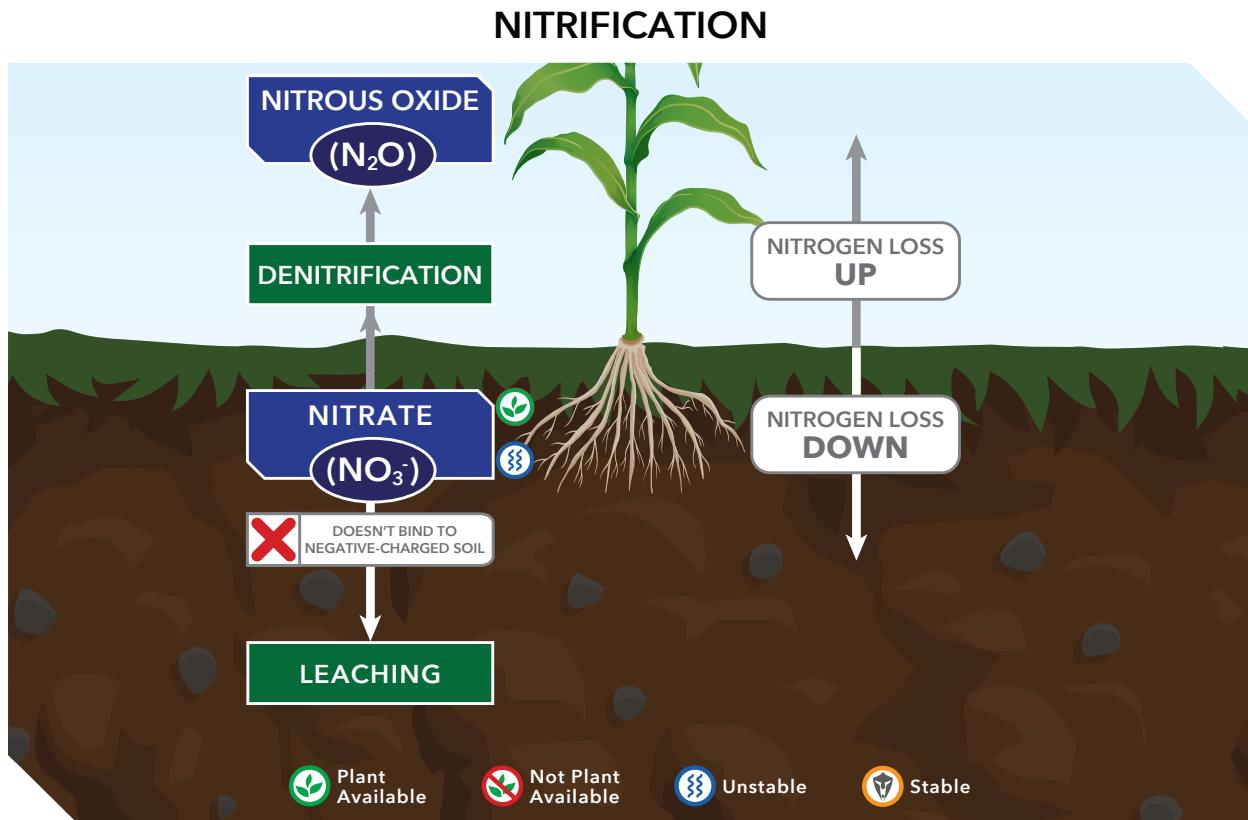
Nitrate is formed by the oxidation of ammonium in the presence of *Nitrosomonas* & *Nitrobacter* bacteria.



ARM U™ 16% DMPP
Active STABILIZER™ PLUS 20-3

reduces nitrification
by inhibiting *Nitrosomonas* and
Nitrobacter bacterial activity.

VOLATILISATION


AMMONIA VOLATILISATION

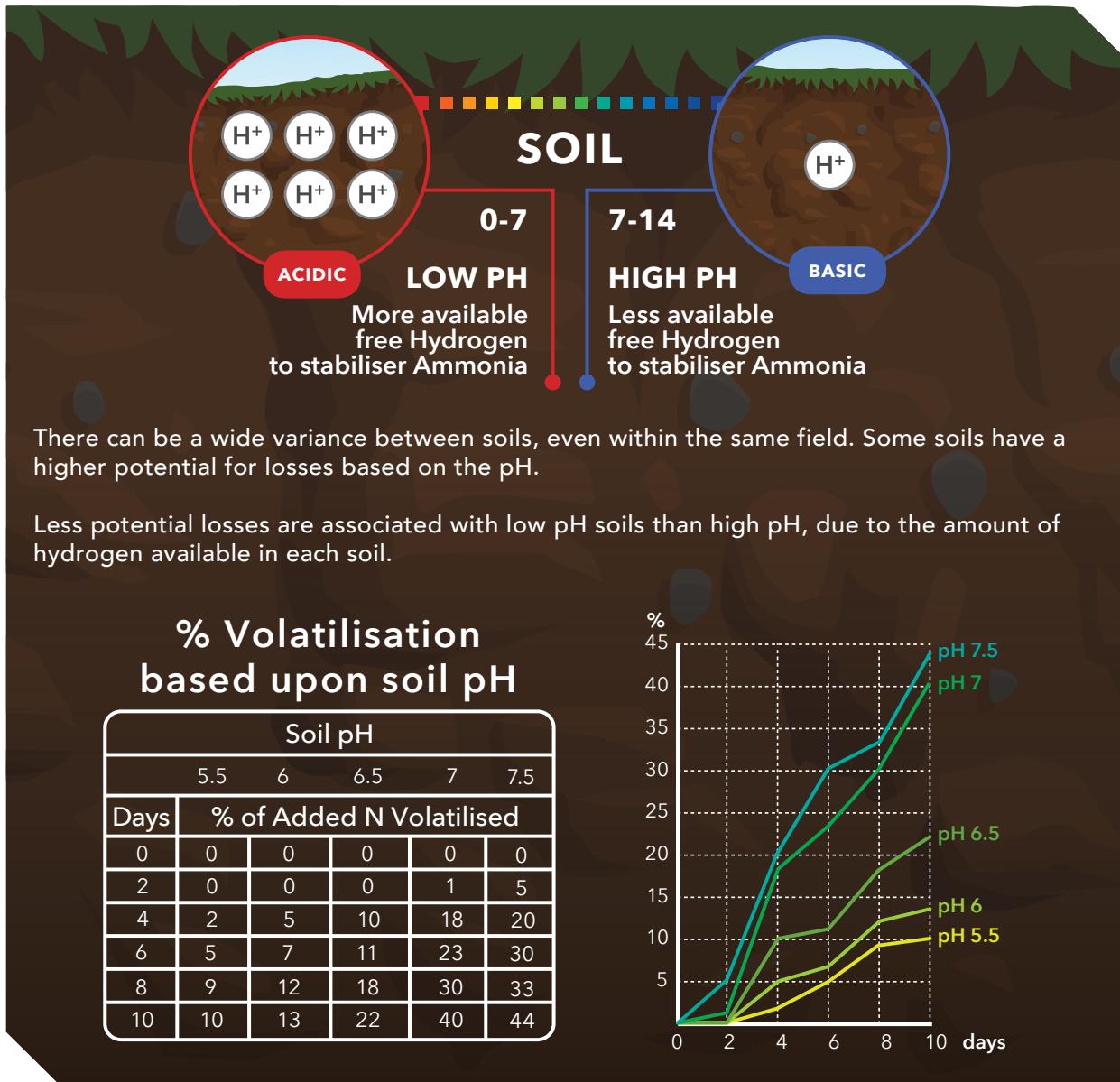
If urea converts at or near the soil surface, nitrogen losses are greatest. The urease enzyme breaks urea into carbon dioxide and ammonia (NH₃). Because ammonia is unstable, it quickly escapes into the air—causing up to 50% nitrogen loss through volatilisation.

CONSIDERATIONS OF VOLATILISATION LOSSES

1. Soil pH.
2. Soil Moisture.
3. Soil Temperature.
4. Thatch Cover — 18-30 times higher urease concentration than underlying soil*.
5. Placement and Concentration.

*"Urease Activity in a Kentucky Bluegrass Turf" – Torello & Wehner.

DENITRIFICATION AND LEACHING

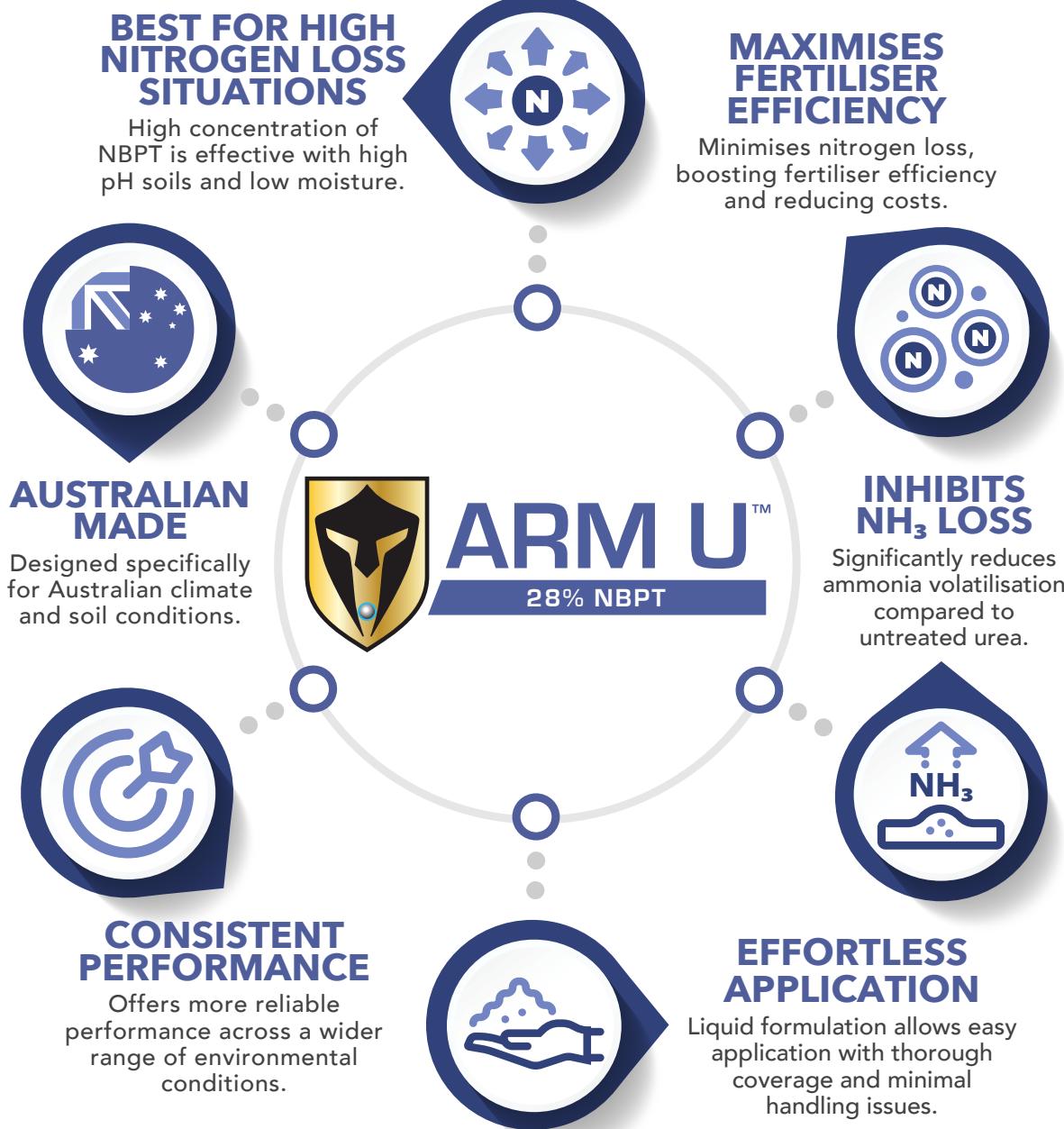

After nitrification, nitrogen can be lost in two main ways: in wet, low-oxygen clay soils ($CEC > 23$), bacteria convert nitrate into N_2 gas (**denitrification**). In sandy soils ($CEC < 10$), nitrate is easily washed below the root zone by rainfall (**leaching**).

CONSIDERATIONS OF NITRIFICATION LOSSES

1. Soil type (CEC).
2. Soil moisture.
3. Soil temperature: Nitrosomonas and Nitrobacter bacteria remain active down to $4^\circ C$, so nitrate can form even in cool soils, increasing the risk of early-season losses.

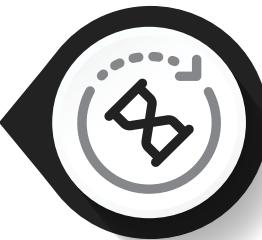
INTRODUCTION

WHY SOIL PH IS IMPORTANT?


PRODUCT COMPARISON

N STABILISERS	Active STABILIZER PLUS 20-3	ARM U 28% NBPT	ARM U 16% DMPP
ROLE OF THE PRODUCT	Reduces ammonia volatilisation, nitrate leaching, and nitrous oxide emissions.	Reduces ammonia volatilisation.	Reduces nitrate leaching and nitrous oxide emissions.
PATENTED	Yes	Yes	Yes
ANALYSIS	20% NBPT + 3.3% DMPP	28.6% NBPT	16.1% DMPP
APPLICATION RATE (UREA)	2 L/MT	1.5 - 2 L/MT	0.6 L/MT
APPLICATION RATE (UAN)	1.5 L/MT	1 - 1.2 L/MT	0.35 L/MT
COMPATIBILITY	Can be mixed with other Active AgriScience stabilisers	Designed to allow ARM U NBPT and DMPP products to be easily mixed together as required for maximum flexibility to suit your needs.	Designed to allow ARM U NBPT and DMPP products to be easily mixed together as required for maximum flexibility to suit your needs.

BENEFITS OF ACTIVE STABILIZER™ PLUS 20-3



BENEFITS OF ARM U™ 16%DMPP

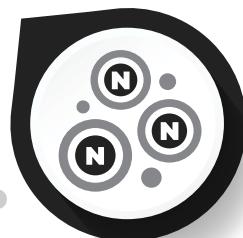
SLOWS DOWN THE N CYCLE

Slows the conversion of ammonium to nitrate, enhancing the efficiency of nitrogen fertilisers.

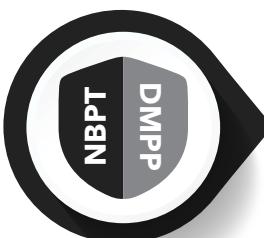
IMPROVES NITROGEN-USE EFFICIENCY

Maximises fertiliser efficiency, lowering overall costs by reducing the amount needed.

AUSTRALIAN MADE


Designed specifically for Australian climate and soil conditions.

ARM U™
16% DMPP


REDUCES N₂O EMISSIONS

DMPP inhibits nitrification which reduces nitrous oxide emissions.

LESS PRODUCT, MORE IMPACT

Requires less product per metric tonne of fertiliser compared to competitor brands.

ADD NBPT FOR DUAL PROTECTION

Can be mixed with ARM U 19% NBPT or 28% NBPT to inhibit all forms of nitrogen loss.

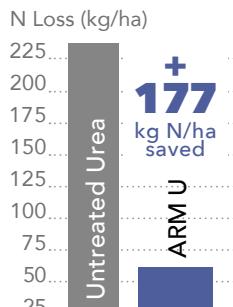
READ THE ENTIRE LABEL BEFORE USING THESE PRODUCTS.

ACTIVE STABILIZER™ PLUS 20-3 BLENDING INSTRUCTIONS

Blending into Urea: Use 2 L Active STABILIZER PLUS 20-3 / 1000 kg Urea. For uniform coating, use batch blending or continuous blending methods with calibrated impregnation equipment. Weigh urea and transfer to blender. Add required amount of Active STABILIZER PLUS 20-3 to urea in blender. Blend until the urea is uniformly coated with Active STABILIZER PLUS 20-3. Do not add any other fertiliser materials until Active STABILIZER PLUS 20-3 is thoroughly distributed. If mixture appears wet or sticky, a drying agent may be added. **Blending into UAN:** Use 1.5 L of Active STABILIZER PLUS 20-3 / 1000 kg UAN solution. Fill spray tank with half the desired amount of UAN. Measure Active STABILIZER PLUS 20-3 and add to the tank. Mix well. Add other products at this stage, if needed. Add second half of UAN solution. Continue mixing until well blended. Keep agitator running while mixing.

ARM U™ 28% NBPT BLENDING INSTRUCTIONS

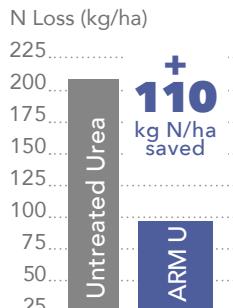
Blending into Urea: Use 1.5 - 2 L ARM U 28% NBPT/1000 kg Urea. For uniform coating, use batch blending or continuous blending methods with calibrated impregnation equipment. Weigh urea and transfer to blender. Add required amount of ARM U 28% NBPT to urea in blender. Blend until the urea is uniformly coated with ARM U 28% NBPT. Do not add any other fertiliser materials until ARM U 28% NBPT is thoroughly distributed. If mixture appears wet or sticky, a drying agent may be added. **Blending into UAN:** Use 1 - 1.2 L ARM U 28% NBPT/ 1000 kg UAN solution. Fill spray tank with half the desired amount of UAN. Measure ARM U 28% NBPT and add to the tank. Mix well. Add other products at this stage if needed. Add second half of UAN solution. Continue mixing until well blended. Keep agitator running while mixing.



ARM U™ 16% DMPP BLENDING INSTRUCTIONS

Blending into Urea: Use 0.6 L ARM U 16% DMPP/1000 kg Urea. For uniform coating, use batch blending or continuous blending methods with calibrated impregnation equipment. Weigh urea and transfer to blender. Add required amount of ARM U 16% DMPP to urea in blender. Blend until the urea is uniformly coated with ARM U 16% DMPP. Do not add any other fertiliser materials until ARM U 16% DMPP is thoroughly distributed. If mixture appears wet or sticky, a drying agent may be added. **Blending into UAN:** Use 0.35 L ARM U 16% DMPP/ 1000 kg UAN solution. Fill spray tank with half the desired amount of UAN. Measure ARM U 16% DMPP and add to tank. Mix well. Add other products at this stage, if needed. Add the second half of the UAN solution. Continue mixing until well blended. Keep agitator running while mixing.

AMMONIA VOLATILISATION FROM UREA


21 day cumulative NH3 loss with ARM U 28% NBPT vs untreated

NH3 LOSS - UREA • SANDY SOIL

Roseisle MB; pH-7.8, OM-0.5%, CEC-8.4;
3rd Party Research by the University of Manitoba - 2024

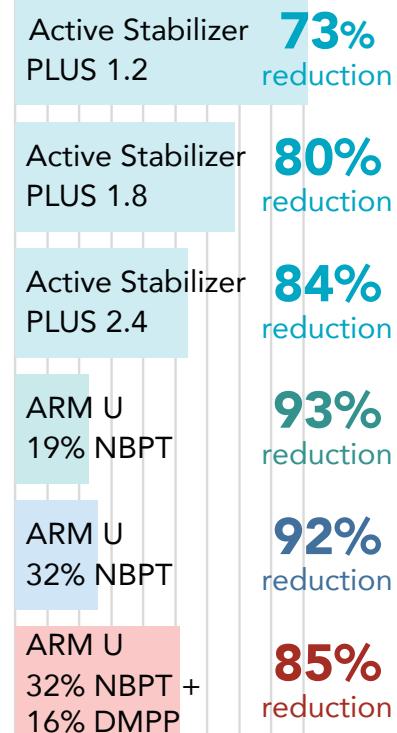
TREATMENT	BANDED		BROADCAST	
	CUMULATIVE NH3 LOSS (kg/ha)	% NH3 REDUCTION	CUMULATIVE NH3 LOSS (kg/ha)	% NH3 REDUCTION
Urea	92.9		237.7	
ARM U 28% NBPT	41.4	55.5	60.9	74.4

NH3 LOSS - UREA • LOAMY SOIL

Carman MB; pH-6.8, OM-2.4%, CEC-11
3rd Party Research by the University of Manitoba - 2024

TREATMENT	BANDED		BROADCAST	
	CUMULATIVE NH3 LOSS (kg/ha)	% NH3 REDUCTION	CUMULATIVE NH3 LOSS (kg/ha)	% NH3 REDUCTION
Urea	69.4		208.1	
ARM U 28% NBPT	50.8	26.8	98.3	52.7

Application Rates with Urea: 2L/tonne.


AMMONIA VOLATILISATION FROM UREA

14 day cumulative NH3 loss with Active AgriScience nitrogen stabilisers vs untreated

NH3 Loss (kg/ha)

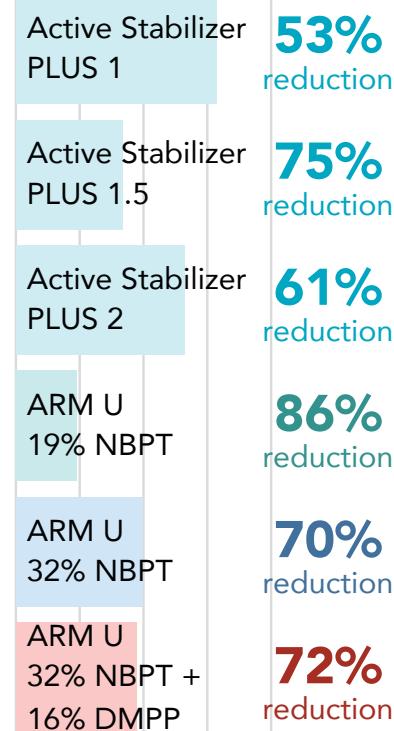
0 1.0 2.0 3.0 4.0

NH3 LOSS - UREA

3rd Party Research by the University of Manitoba - 2021

TREATMENT	BANDED		BROADCAST	
	CUMULATIVE NH3 LOSS (kg/ha)	% NH3 REDUCTION	CUMULATIVE NH3 LOSS (kg/ha)	% NH3 REDUCTION
Urea	16.6		19.2	
Active Stabilizer PLUS 1.2	4.6	72.5	7.4	61.5
Active Stabilizer PLUS 1.8	3.4	79.4	4.8	75.2
Active Stabilizer PLUS 2.4	2.7	83.8	5.7	70.3
ARM U 19% NBPT	1.1	93.1	3.4	82.4
ARM U 32% NBPT	1.3	92.3	2.4	87.6
ARM U 32% NBPT + 16% DMPP	2.6	84.5	4.5	76.5

Application Rates with Urea: Active Stabilizer PLUS 1.2 = 1.2L/tonne; Active Stabilizer PLUS 1.8 = 1.8L/tonne; Active Stabilizer PLUS 2.4 = 2.4L/tonne; ARM U 19% NBPT = 2L/tonne; ARM U 32% NBPT = 1.5L/tonne; ARM U 32% NBPT + 16% DMPP = 1.8L/tonne.

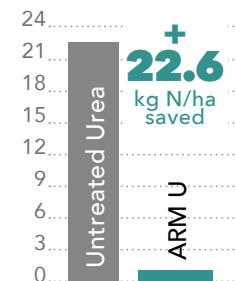

AMMONIA VOLATILISATION FROM UAN

14 day cumulative NH3 loss with Active AgriScience nitrogen stabilisers vs untreated

NH3 Loss (kg/ha)

0 0.5 1.0 1.5 2.0

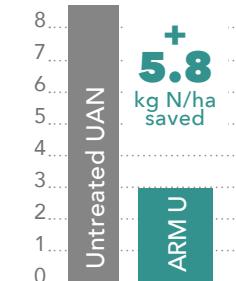
NH3 LOSS - UAN


3rd Party Research by the University of Manitoba - 2021

TREATMENT	DRIBBLE BANDED		BROADCAST	
	CUMULATIVE NH3 LOSS (kg/ha)	% NH3 REDUCTION	CUMULATIVE NH3 LOSS (kg/ha)	% NH3 REDUCTION
UAN	3.3		2.8	
Active Stabilizer PLUS 1	1.6	53.1	2.1	23.7
Active Stabilizer PLUS 1.5	0.8	75.0	2.7	1.9
Active Stabilizer PLUS 2	1.3	60.5	2.6	6.2
ARM U 19% NBPT	0.5	85.8	1.7	39.7
ARM U 32% NBPT	1.0	70.4	1.6	41.4
ARM U 32% NBPT + 16% DMPP	0.9	71.9	2.1	25.5

Application Rates with UAN: Active Stabilizer PLUS 1 = 1L/tonne; Active Stabilizer PLUS 1.5 = 1.5L/tonne; Active Stabilizer PLUS 2 = 2L/tonne; ARM U 19% NBPT = 1.2L/tonne; ARM U 32% NBPT = 1L/tonne; ARM U 32% NBPT + 16% DMPP = 1.1L/tonne.

N Loss (kg/ha)


N loss reduction:
96%

NH3 LOSS - UREA

3rd Party Research by the University of Manitoba - 2016

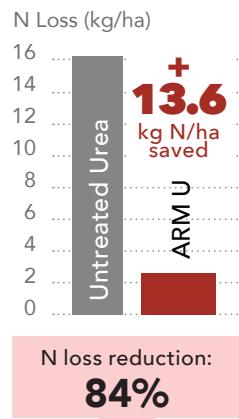
TREATMENT	CUMULATIVE NH3 LOSS (kg N/ha)	% NH3 REDUCTION	NITROGEN SAVED (kg N/ha)
Urea	22.6		
ARM U 19% NBPT	1.0	95.8	21.6

N Loss (kg/ha)

N loss reduction:
53%

NH3 LOSS - UAN

3rd Party Research by the University of Manitoba - 2016

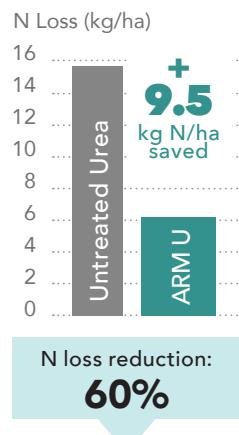

TREATMENT	CUMULATIVE NH3 LOSS (kg N/ha)	% NH3 REDUCTION	NITROGEN SAVED (kg N/ha)
UAN	8.8		
ARM U 19% NBPT	3.0	65.4	5.8

Application Rates: Urea: 2L/tonne; UAN: 1L/tonne.

FIELD VOLATILISATION RESEARCH DATA

WHEAT • AMMONIA VOLATILISATION FROM UREA

28 day cumulative NH3 loss with ARM U 19% NBPT, 32% NBPT + 16% DMPP vs untreated



WHEAT - NH3 LOSS • AUTUMN APPLIED UREA

Carman and Portage Manitoba

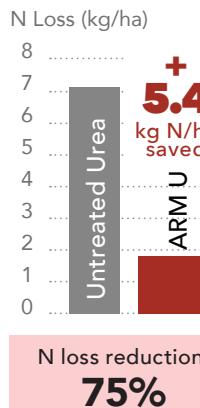
3rd Party Research by the University of Manitoba - 2017-2018

TREATMENT	2017 NH3 LOSS (kg of N/ha)	2018 NH3 LOSS (kg of N/ha)	2 YEAR AVG. NH3 LOSS (kg of N/ha)	% LOSS REDUCTION	NITROGEN SAVED (kg of N/ha)
Untreated Urea	14.4	18.3	16.3		
ARM U 19% NBPT	4.1	2.7	3.4	79.3	13.0
ARM U 32% NBPT + 16% DMPP	3.7	1.7	2.7	83.5	13.6

WHEAT - NH3 LOSS • SPRING APPLIED UREA

High Bluff, Carman and Portage Manitoba

3rd Party Research by the University of Manitoba - 2016-2018

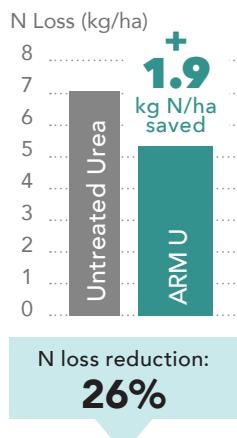

TREATMENT	2016 NH3 LOSS (kg of N/ha)	2017 NH3 LOSS (kg of N/ha)	2018 NH3 LOSS (kg of N/ha)	3 YEAR AVG. NH3 LOSS (kg of N/ha)	% LOSS REDUCTION	NITROGEN SAVED (kg of N/ha)
Urea	18.6	19.7	9.2	15.8		
ARM U 19% NBPT	4.3	10.1	4.5	6.3	60.3	9.5
ARM U 32% NBPT + 16% DMPP	4.0	10.6	7.5	7.4	53.5	8.5

Application Rates with Urea:

ARM U 19% NBPT = 2L/tonne; ARM U 32% NBPT + 16% DMPP = 1.5L/tonne.

WHEAT • AMMONIA VOLATILISATION FROM UAN

28 day cumulative NH3 loss with ARM U 19% NBPT, 32% NBPT + 16% DMPP vs untreated



WHEAT - NH3 LOSS • AUTUMN APPLIED UAN

Carman and Portage Manitoba

3rd Party Research by the University of Manitoba - 2017-2018

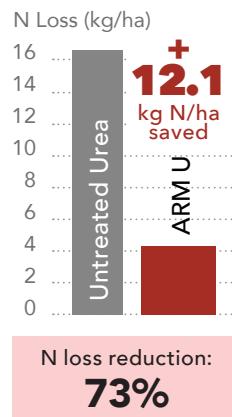
TREATMENT	2017 NH3 LOSS (kg of N/ha)	2018 NH3 LOSS (kg of N/ha)	2 YEAR AVG. NH3 LOSS (kg of N/ha)	% LOSS REDUCTION	NITROGEN SAVED (kg of N/ha)
Untreated UAN	8.6	5.8	7.2		
ARM U 19% NBPT	4.5	2.8	3.6	49.8	3.6
ARM U 32% NBPT + 16% DMPP	1.7	1.9	1.8	75.3	5.4

WHEAT - NH3 LOSS • SPRING APPLIED UAN

High Bluff, Carman and Portage Manitoba

3rd Party Research by the University of Manitoba - 2016-2018

TREATMENT	2016 NH3 LOSS (kg of N/ha)	2017 NH3 LOSS (kg of N/ha)	2018 NH3 LOSS (kg of N/ha)	3 YEAR AVG. NH3 LOSS (kg of N/ha)	% LOSS REDUCTION	NITROGEN SAVED (kg of N/ha)
UAN	7.8	8.5	5.0	7.1		
ARM U 19% NBPT	4.9	6.3	4.4	5.2	26.3	1.9
ARM U 32% NBPT 16% DMPP	5.0	9.0	4.8	6.3	11.7	0.8


Application Rates with UAN:

ARM U 19% NBPT = 1L/tonne; ARM U 32% NBPT + 16% DMPP = 1L/tonne.

FIELD VOLATILISATION RESEARCH DATA

CANOLA • AMMONIA VOLATILISATION FROM UREA

28 day cumulative NH3 loss with ARM U 19% NBPT, 32% NBPT + 16% DMPP vs untreated

CANOLA - NH3 LOSS • AUTUMN APPLIED UREA

Carman and Portage Manitoba

3rd Party Research by the University of Manitoba - 2017-2018

TREATMENT	2017 NH3 LOSS (kg of N/ha)	2018 NH3 LOSS (kg of N/ha)	2 YEAR AVG. NH3 LOSS (kg of N/ha)	% LOSS REDUCTION	NITROGEN SAVED (kg of N/ha)
Untreated Urea	17.4	15.9	16.6		
ARM U 19% NBPT	3.2	6.1	4.7	72.0	12.0
ARM U 32% NBPT + 16% DMPP	4.8	4.3	4.5	72.8	12.1

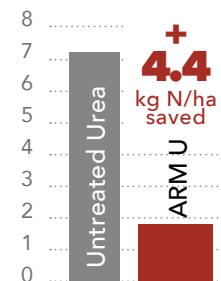
CANOLA - NH3 LOSS • SPRING APPLIED UREA

High Bluff, Carman and Portage Manitoba

3rd Party Research by the University of Manitoba - 2016-2018

TREATMENT	2016 NH3 LOSS (kg of N/ha)	2017 NH3 LOSS (kg of N/ha)	2018 NH3 LOSS (kg of N/ha)	3 YEAR AVG. NH3 LOSS (kg of N/ha)	% LOSS REDUCTION	NITROGEN SAVED (kg of N/ha)
Urea	19.2	23.2	16.6	19.6		
ARM U 19% NBPT	4.1	9.5	6.9	6.8	65.3	12.8
ARM U 32% NBPT + 16% DMPP	5.3	12.8	9.3	9.1	53.5	10.5

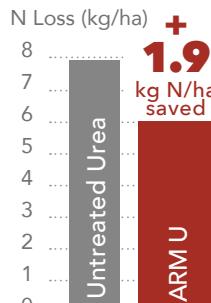
Application Rates with Urea:


ARM U 19% NBPT = 2L/tonne; ARM U 32% NBPT + 16% DMPP = 1.5L/tonne.

CANOLA • AMMONIA VOLATILISATION FROM UAN

28 day cumulative NH3 loss with ARM U 19% NBPT, 32% NBPT + 16% DMPP vs untreated

N Loss (kg/ha)


N loss reduction:
61%

CANOLA - NH3 LOSS • AUTUMN APPLIED UAN

Carman and Portage Manitoba

3rd Party Research by the University of Manitoba - 2017-2018

TREATMENT	2017 NH3 LOSS (kg of N/ha)	2018 NH3 LOSS (kg of N/ha)	2 YEAR AVG. NH3 LOSS (kg of N/ha)	% LOSS REDUCTION	NITROGEN SAVED (kg of N/ha)
Untreated UAN	5.3	9.2	7.3		
ARM U 19% NBPT	3.2	3.2	3.2	56.2	4.1
ARM U 32% NBPT + 16% DMPP	2.4	3.3	2.9	60.7	4.4

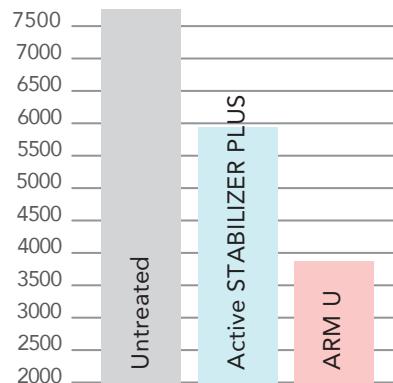
N loss reduction:
25%

CANOLA - NH3 LOSS • SPRING APPLIED UAN

High Bluff, Carman and Portage Manitoba

3rd Party Research by the University of Manitoba - 2016-2018

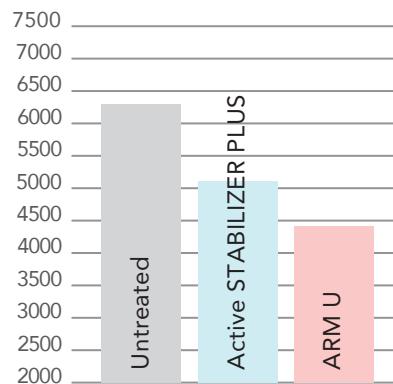
TREATMENT	2016 NH3 LOSS (kg of N/ha)	2017 NH3 LOSS (kg of N/ha)	2018 NH3 LOSS (kg of N/ha)	3 YEAR AVG. NH3 LOSS (kg of N/ha)	% LOSS REDUCTION	NITROGEN SAVED (kg of N/ha)
UAN	9.5	8.4	5.9	7.9		
ARM U 19% NBPT	5.3	8.4	5.0	6.2	21.9	1.7
ARM U 32% NBPT + 16% DMPP	6.0	8.3	3.6	6.0	24.6	1.9


Application Rates with UAN:

ARM U 19% NBPT = 1L/tonne; ARM U 32% NBPT + 16% DMPP = 1L/tonne.

N₂O EMISSIONS RESEARCH DATA

N₂O EMISSIONS RESEARCH


Active STABILIZER PLUS and ARM U 32% NBPT + 16% DMPP vs untreated urea

N₂O EMISSIONS FROM BROADCASTED UREA

3rd Party Research by the University of Manitoba

TREATMENT	N ₂ O FLUX (g/ha)	DIFFERENCE	% REDUCTION
Untreated	7760		
Active STABILIZER PLUS	5965	1794	23.1
ARM U 32% NBPT + 16% DMPP	3889	3871	49.9

N₂O EMISSIONS FROM BANDED UREA

3rd Party Research by the University of Manitoba

TREATMENT	N ₂ O FLUX (g/ha)	DIFFERENCE (g/ha)	% REDUCTION
Untreated	6301		
Active STABILIZER PLUS	5161	1141	18.1
ARM U 32% NBPT + 16% DMPP	4462	1839	29.2

SHELF LIFE STUDY • AMMONIA VOLATILISATION

ARM U 19% NBPT treated fertiliser has minimum one year shelflife.

ARM U 19% NBPT-TREATED UREA EFFICACY VS SHELF LIFE

3rd Party Research by the University of Manitoba - 2017

TREATMENT	CUMULATIVE NH3 LOSS (kg/ha)					% NH3 REDUCTION	NITROGEN SAVED (kg/ha)
	Day 2	Day 4	Day 7	Day 14	Day 21 (Total)		
Untreated Urea	3.4	20.3	28.8	32.8	33.1		
ARM U 19% NBPT Urea – April 2016	0.6	1.4	2	3.8	4.3	87.3	28.8
ARM U 19% NBPT Urea – October 2016	1.7	2.6	4.1	8.5	9	73.2	24.2
ARM U 19% NBPT Urea – January 2017	0.8	1.4	2.1	5.5	6.3	81.1	26.8
ARM U 19% NBPT Urea – Fresh (April 2017)	0.5	1.1	1.8	8.5	8.7	73.9	24.4

ARM U 19% NBPT-TREATED UAN EFFICACY VS SHELF LIFE

3rd Party Research by the University of Manitoba - 2017

TREATMENT	CUMULATIVE NH3 LOSS (kg/ha)					% NH3 REDUCTION	NITROGEN SAVED (kg/ha)
	Day 2	Day 4	Day 7	Day 14	Day 21 (Total)		
Untreated UAN	5.4	14.6	21.2	31.3	31.8		
ARM U 19% NBPT UAN – October 2016	2.7	3.6	5.2	8	8.6	73.3	23.2
ARM U 19% NBPT UAN – January 2017	2.3	3.8	5.8	8.7	9.4	70.6	22.4
ARM U 19% NBPT UAN – Fresh (April 2017)	3	5.5	6.9	10.5	11.9	62.6	19.8

NITROGEN STABILISER SHELF LIFE RESEARCH DATA

Average efficacy:
99%

SAMPLING TIME	% NBPT EFFICACY	% DMPP EFFICACY
2 months	100%	98%
6 months	100%	98%
10 months	100%	100%

Average efficacy:
97%

SAMPLING TIME	% NBPT EFFICACY
1 month	95%
10 months	99%

Average efficacy:
99%

SAMPLING TIME	% DMPP EFFICACY
5 months	98%
10 months	100%

ACTIVE AGRISCIENCE DISCLAIMER: Presented data and product attributes will not guarantee the future efficacy and product attributes as these vary greatly related to weather conditions soil types and genetics of crops. It is understood and agreed that Active Agriscience Australia Pty Ltd. ("Active") does not guarantee that that use of its Products will yield any specific result. Active's legal liability, and that of its employees or agents, arising from use of its products shall be limited to the cost paid for the product regardless of whether any loss arose from Active's own negligence, breach of contract, or any other cause. Under no circumstance shall Active be liable, beyond the cost paid for the product, for direct consequential, incidental, or special damages, including, but not limited to, damage or destruction of a crop, or contamination of any property.

ACTIVETM
AgriScience

ACTIVEAGRISCIENCE.COM

CONTACT

Active AgriScience Australia

PO BOX 970
Canning Bridge,
Applecross, WA, 6153

Phil Nixon

Executive Director
0402 794 288
phil.n@activeagri.com

Greg Tapscott

Business Development Manager -
WA and SA
0438 974 354
greg.t@activeagri.com

Jess Sampson

Business Manager - East Coast
0448 854 412
jess.s@activeagri.com